Proton in chemistry




Atomic numberedit

In chemistry, the number of protons in the nucleus of an atom is known as the atomic number, which determines the chemical element to which the atom belongs. For example, the atomic number of chlorine is 17; this means that each chlorine atom has 17 protons and that all atoms with 17 protons are chlorine atoms. The chemical properties of each atom are determined by the number of (negatively charged) electrons, which for neutral atoms is equal to the number of (positive) protons so that the total charge is zero. For example, a neutral chlorine atom has 17 protons and 17 electrons, whereas a Cl− anion has 17 protons and 18 electrons for a total charge of −1.

All atoms of a given element are not necessarily identical, however. The number of neutrons may vary to form different isotopes, and energy levels may differ, resulting in different nuclear isomers. For example, there are two stable isotopes of chlorine: 35
17
Cl
with 35 − 17 = 18 neutrons and 37
17
Cl
with 37 − 17 = 20 neutrons.

Hydrogen ionedit

In chemistry, the term proton refers to the hydrogen ion, H+
. Since the atomic number of hydrogen is 1, a hydrogen ion has no electrons and corresponds to a bare nucleus, consisting of a proton (and 0 neutrons for the most abundant isotope protium 1
1
H
). The proton is a "bare charge" with only about 1/64,000 of the radius of a hydrogen atom, and so is extremely reactive chemically. The free proton, thus, has an extremely short lifetime in chemical systems such as liquids and it reacts immediately with the electron cloud of any available molecule. In aqueous solution, it forms the hydronium ion, H3O+, which in turn is further solvated by water molecules in clusters such as H5O2+ and H9O4+.

The transfer of H+
in an acid–base reaction is usually referred to as "proton transfer". The acid is referred to as a proton donor and the base as a proton acceptor. Likewise, biochemical terms such as proton pump and proton channel refer to the movement of hydrated H+
ions.

The ion produced by removing the electron from a deuterium atom is known as a deuteron, not a proton. Likewise, removing an electron from a tritium atom produces a triton.

Proton nuclear magnetic resonance (NMR)edit

Also in chemistry, the term "proton NMR" refers to the observation of hydrogen-1 nuclei in (mostly organic) molecules by nuclear magnetic resonance. This method uses the spin of the proton, which has the value one-half (in units of hbar). The name refers to examination of protons as they occur in protium (hydrogen-1 atoms) in compounds, and does not imply that free protons exist in the compound being studied.

Comments

Popular posts from this blog

What Is Whiteboard Animation Video

Stability

Proton